VR is the Buzz word for this year, every technology company clambering to get their headset out on to the market. Much of the market needs to catch-up though, the power of home computing needs to improve and removing the inevitable extra cabling and wires that come with current headsets. Luckily this article is about the future technology of VR headsets, see what we can expect as this technology grows.
If you want to use one of today's major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that's powering your virtual world.
But researchers from MITâs Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research teamâs MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.
There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google's Daydream View and Samsung's Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which allow for a more mobile VR experience by building a computer that's more easily carried. But there are still a lot of limitations to either of these solutions.
THE MOVR PROTOTYPE SIDESTEPS TETHERED VR ISSUES
Latency is the whole reason a wireless solution hasn't worked so far. VR is especially latency-sensitive, along with the huge bandwidth requirements that VR needs to display the level of high-resolution video required for virtual reality to work. But the MIT team claims that the millimeter wave signals can transmit fast enough to make a wireless VR headset feasible.
The issue with using millimeter wave technology is that the signal needs a direct line of sight, and fares poorly when it encounters any obstacles. MoVR gets around this by working as a programmable mirror that can direct the direction of the signal to the headset even while itâs moving to always make sure the signal is transmitting directly to the headset's receivers.
For now, the MoVR is simply a prototype, with the team hoping to further shrink down the system to allow for multiple wireless headsets in one room without encountering signal interference. But even as a proof-of-concept, it's an interesting perspective on how virtual reality could one day work.